Signals of a W' boson near 2 TeV

Bogdan Dobrescu

Fermilab, Theoretical Physics Department

Based on work with:

• Zhen Liu

1506.06736 ("A W' boson near 2 TeV: predictions for Run 2 of the LHC") **1507.01923** ("Heavy Higgs Bosons and the 2 TeV W' Boson")

- Pilar Coloma and Jacobo Lopez-Pavon 1508.04129 ("Right-Handed Neutrinos and the 2 TeV W' Boson")
- Patrick Fox, 1511.02148 ("Signals of a 2 TeV W' boson and a heavier Z'")

January 10, 2015 – seminar at the Invisibles Network

The LHC experiments have confirmed many aspects of the Standard Model, and measured $M_h = 125.09 \pm 0.24$ GeV (ATLAS + CMS, 1503.07589)

The LHC is probing the laws of nature at the shortest distances accessible by humans so far.

We do not know what the LHC will find next ...

$$W'
ightarrow eN
ightarrow e^+ e^- j j$$

 N_R - right-handed neutrino W' boson associated with $SU(2)_R$ (Mohapatra, Pati, 1974)

CMS (1407.3683) - eejj mass distribution:

$$M_{eejj} = 1.8-2.2$$
 TeV bin:
14 events observed
background = 4.3 events
 2.8σ excess

Classic prediction of Left-Right symmetric model:

(Keung, Senjanovic, 1983)

 N_R has Majorana mass $\Rightarrow \Gamma(N \to e^- u \bar{d}) = \Gamma(N \to e^+ \bar{u} d)$ \Rightarrow equal number of $e^+ e^- j j$ (opposite sign) and $e^{\pm} e^{\pm} j j$ (same sign) events

CMS observed 13 opposite-sign events out of the 14 eejj events, so a $W' \rightarrow eN \rightarrow e^+e^-jj$ explanation requires N to have Dirac mass at the TeV scale.

Who is the "left-handed" Dirac partner of N_R ?

Models

To specify an $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ model we need:

- a right-handed neutrino sector ...
- an extended Higgs sector

At least one scalar must break $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ down to $SU(2)_W \times U(1)_Y$, so that $M_{W'} \approx 2$ TeV. Simple choices: $SU(2)_R$ doublet or triplet

Other scalar(s) must break the electroweak symmetry, and include the SM-like Higgs boson. Higgs sector – T:(1,3), $\Sigma:(2,2)$ under $SU(2)_L \times SU(2)_R$

$$\begin{split} \langle T \rangle = \begin{pmatrix} 0 & 0 \\ u_T & 0 \end{pmatrix} & \langle \Sigma \rangle = v_H \begin{pmatrix} \cos\beta & 0 \\ 0 & e^{i\alpha_{\Sigma}} \sin\beta \end{pmatrix} \\ & \swarrow \\ M_{Z'} > 3.4 \text{ TeV} & v_H \approx 174 \text{ GeV} \end{split}$$

Mass terms for the charged gauge bosons:

$$rac{1}{2}ig(W_L^{+\mu},W_R^{+\mu}ig)igg(egin{array}{cc} g_L^2 v_H^2 & -g_L g_R \, v_H^2 \sin 2eta \ -g_L g_R \, v_H^2 \sin 2eta & g_R^2 \left(2 u_T^2 + v_H^2
ight) \end{pmatrix}igg(egin{array}{cc} W_{L\mu}^- \ W_{R\mu}^- \end{pmatrix}$$

$$W_L - W_R$$
 mixing: $\sin heta_+ = rac{g_{
m R}}{g} \left(rac{M_W}{M_{W'}}
ight)^2 \sin 2eta$

Mass eigenstates: W and W'.

Include a vectorlike lepton $\psi = (\psi^N, \psi^e)$, give a Majorana mass to ψ^N_R ($\bar{\psi}^c_R T^{\dagger} \psi_R$), and a Dirac mass to $\bar{N}_R \psi^N_L \longrightarrow$ opposite-sign eejj events!

Fields	spin	$SU(3)_c$	$SU(2)_L$	$SU(2)_R$	$U(1)_{B-L}$
$egin{array}{c} q_L = (u_L, \ d_L)^ op \end{array}$	1/2	3	2	1	+1/3
$q_R = (u_R, \; d_R)^ op$	1/2	3	1	2	+1/3
$L_L = (u_L, \ \ell_L)^ op$	1/2	1	2	1	-1
$L_R = (N_R, \; \ell_R)^ op$	1/2	1	1	2	-1
$\psi_{L,R} = (\psi^N,\psi^e)_{L,R}^ op$	1/2	1	1	2	+1
Σ	0	1	2	2	0
T	0	1	1	3	+2

Assume N_R^{μ} is heavier than $W' \Longrightarrow$ no $\mu \mu j j$ events

 N^e_R and $N^ au_R$ may mix: $rac{g_{
m R}}{\sqrt{2}} W^\prime_
u \, \overline{N}_R \gamma^
u \left(s_{ heta_e} \, e_R + c_{ heta_e} \, au_R
ight)$

A simpler right-handed neutrino sector

with Pilar Coloma and Jacobo Lopez-Pavon 1508.04129

Assume a flavor structure for the Majorana masses: $-\frac{y_{\mu\mu}}{2}(\overline{L}_{R}^{\mu})^{c} i\sigma_{2} T L_{R}^{\mu} - y_{e\tau}(\overline{L}_{R}^{e})^{c} i\sigma_{2} T L_{R}^{\tau}$

right-handed neutrinos acquire masses:

$$-u_T \left(\overline{N}^e_R, \overline{N}^\mu_R, \overline{N}^ au_R
ight)^c \left(egin{array}{ccc} 0 & 0 & y_{e au} \ 0 & y_{\mu\mu} & 0 \ y_{e au} & 0 & 0 \end{array}
ight) \left(egin{array}{ccc} N^e_R \ N^\mu_R \ N^\mu_R \ N^ au_R \end{array}
ight)$$

Two right-handed neutrinos make a Dirac fermion N_D :

$$N_R^{ au}\equiv N_{D_L}^c \quad,\quad N_R^e\equiv N_{D_R}$$

Interactions of N_D with W':

$$rac{g_{
m R}}{\sqrt{2}} W_
u^\prime \left(\overline{N}_{D_R} \gamma^
u e_R + \overline{N}_{D_L}^c \gamma^
u au_R
ight)$$

Flavor structure can be enforced by a global U(1) symmetry with the L_R^e , L_R^μ , L_R^τ doublets carrying charges -1, 0, +1.

Implications for the LHC:

$$\begin{split} B(W'^+ &\to e^+ N_D \to e^+ e^- jj) = B(W'^+ \to \tau^+ \overline{N}_D \to \tau^+ \tau^- jj) \\ &= B(W'^+ \to e^+ N_D \to e^+ \tau^+ jj) \\ &= B(W'^+ \to \tau^+ \overline{N}_D \to \tau^+ e^+ jj) \end{split}$$

pp ightarrow W' cross section

 $\frac{g_{\rm R}}{\sqrt{2}} W_{\mu}^{\prime} \left(\bar{u}_R \gamma^{\mu} d_R + \bar{c}_R \gamma^{\mu} s_R + \bar{t}_R \gamma^{\mu} b_R \right)$

W' widths and branching fractions

Heavy Higgs bosons (part of the bidoublet), H^{\pm}, H^0, A^0 , have approximately the same mass (assumed here in the 500–600 GeV range).

Comparison of the CMS e^+e^-jj excess with the $W' \rightarrow eN_D \rightarrow e^+e^-jj$ rate allows a determination of m_{N_D} :

with P. Fox, 1511.02148

 $\Rightarrow m_{N_D} \approx 1.4 \text{ TeV}$

 $u\bar{d} \rightarrow W' \rightarrow jj$

W' decays predominantly into quark pairs $\longrightarrow B(W' \rightarrow jj) \approx 60\%$ Highly boosted t, W, Z, h^0 often look like jets $\longrightarrow B(W' \rightarrow "jj") \approx 85\%$ with P. Fox, 1511.02148

CMS (1512.01224):

ATLAS (1512.01530):

 $W' \to t\bar{b} \to (jjb)\bar{b}$

CMS (B2G-009):

 $g_{
m R} \lesssim 0.45$ – some tension with the jj and WZ preferred values. W' width used by CMS (based on $g_L = g_R$): ~ 65 GeV. W' width in this model: $\Gamma_{W'} \approx 30$ GeV: does the limit on $g_{
m R}$ relax?

$\underline{W' \to WZ \to JJ}$

ATLAS (1506.00962):

CMS (1405.1994):

 $W'
ightarrow WZ
ightarrow J(\ell^+\ell^-)$

 $W'
ightarrow WZ
ightarrow (\ell
u) J$

Run 1 combination (F. Dias et al, 1512.03371):

Run 2: CMS-EXO-15-002

 $\sigma_8pprox 5\pm 2$ fb

 $\sigma_{13}/\sigma_8pprox 6.5$ for $M_{W'}=1.9~{
m TeV}$

 $W'
ightarrow Wh
ightarrow (\ell
u) (b \overline{b})$

CMS (EXO-14-010):

ATLAS (CONF-2015-074):

The $W' \rightarrow Wh^0$ rate is consistent with the eejj excess.

1507.01923

 $W'
ightarrow H^+H^0, \ H^+A^0
ightarrow (tar{b})(tar{t})
ightarrow 3W + 4b$

ATLAS 1504.04605 $\ell^+\ell^+ + (\geq 3)b$ and $\ell^+\ell^+bb$

Туре	N_{j}	N_b	$H_{\rm T}$ [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]
e^+e^+	4	3	709	298
e^+e^+	6	3	800	137
$e^+\mu^+$	5	3	744	216
$e^+\mu^+$	4	3	888	155
$\mu^+ e^+$	3	3	1439	239
$\mu^-\mu^+\mu^-$	4	4	1072	176

Type	N_{j}	$H_{\rm T}~[{ m GeV}]$	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]
e^-e^-	3	807	171
e^+e^+	5	862	268
e^+e^+	5	868	113
μ^-e^-	6	1346	353
$e^+\mu^+$	5	810	106
$e^-\mu^-$	3	707	184
$e^-\mu^-$	2	706	174
$\mu^+ e^+$	8	882	150
$\mu^+ e^+$	4	860	112
$\mu^+\mu^+$	5	888	111
$\mu^-e^+e^+$	5	773	197
$\mu^-e^+e^+$	9	968	355

Excess explained for $M_{H^\pm} \approx M_{H^0} \approx M_{A^0} \approx 500~{\rm GeV}$ $(M_{W'} \approx 1.9-2~{\rm TeV})$

Signal	channel	efficiency	signal events		obs. (background)
	$W' o H^\pm (H^0/A^0) o 3t+b$	$2.5 imes10^{-4}$	1.0-1.8		12 (4.3 ±1.1 ± 1.1)
$bb\ell^\pm\ell^\pm$	$W' \! ightarrow (\tau/e) N \! ightarrow (\tau/e) (\tau/e) tb$	$5.3 imes10^{-4}$	2.2-3.8	4-7	
	$pp ightarrow tar{t}A^0, tar{t}H^0 ightarrow 4t$	$1.7 imes10^{-2}$	1.1		
$\geq \! 3b\ell^\pm\ell^\pm$ –	$W' \! ightarrow H^{\pm}(H^0/A^0) \ ightarrow \ 3t+b$	$6.3 imes10^{-4}$	2.5-4.4	5-7	6 (1.1 \pm 0.9 \pm 0.4)
	$pp ightarrow tar{t}A^0, tar{t}H^0 ightarrow 4t$	$4.1 imes10^{-2}$	2.6		

Branching fractions for bosonic decays of W':

Z' couplings to quarks and leptons:

$$-rac{1}{\sqrt{g_{_{\mathrm{R}}}^2+g_{B-L}^2}} \Bigl(g_{_{\mathrm{R}}}^2T_R^3-g_{B-L}^2rac{B-L}{2}\Bigr)$$

If $SU(2)_R \times U(1)_{B-L} \to U(1)_Y$ breaking is due to an $SU(2)_R$ triplet:

 $M_{Z'}=\sqrt{2}rac{g_{
m R}}{\left(g_{
m R}^2-g_Y^2
ight)^{1/2}}\,M_{W'}$, $g_Ypprox 0.36$ is the SM hypercharge coupling

$$rac{1}{g_{B-L}^2} = rac{1}{g'^2} - rac{1}{g_{
m R}^2}$$

Z' can be lighter than 3.4 TeV if the $SU(2)_R \times U(1)_{B-L} \to U(1)_Y$ breaking is due to an $SU(2)_R$ doublet

with P. Fox, 1511.02148

Conclusions

• Excess events near

1.8–2 TeV reported by CMS and ATLAS:

 $W'
ightarrow e^+ e^- j j$, Wh^0 , WZ

Rates consistent with $SU(2)_R \times SU(2)_L \times U(1)_{B-L}$ gauge model (1511.02148)

• If a W' will be confirmed, a new era of discoveries will follow: measurements of the Z' boson, right-handed neutrinos, heavy Higgs bosons, ..., will lead us to deeper organizing principles.

Bogdan Dobrescu (Fermilab)